Fizik ve matematik konularını öğrendiklerimiz doğrultusunda ele almaya çalıştık. Umarız ele alınan konular sizlere yardımcı olmuştur. Bize yorumlarınız ve yayınlamasını istediğiniz yazıları gönderirseniz memnun oluruz...
23 Şubat 2012 Perşembe
Cartan's Structure Equations
Now we will dive into most elegant form of mathematical structure of our universe.
Major motivation of construction of structure equation is transformation of coordinate basis to non coordinate basis.We know from elementary physics only cartesian coordinate is orthogonal.Therefore we want build a framework that have orthogonal basis and independent from chosen coordinate frame.
To describe a mathematical framework that belong to physical phenomena one has to take a coordinate system and approach a description of experimental fact that valid every time and independend from where experments performed.From this consequences we want orthogonal basis and to be converted between different coordinates.Special relativity and General relativity are coordinate independent theories.And they are valid any referance frame.
Next chapter we will introduce basics of CSE.
25 Ekim 2011 Salı
Ölçüm teorisi
12 Ekim 2011 Çarşamba
Matematik için önerebileceğim kaynaklar
Halkalarda türev
1. GİRİŞ
Türetme ve halkaların yapısı arasındaki ilişki 50 yılı aşkın süredir birçok matematikçi tarafından çalışılmıştır. Edward Posner tarafından 1957 yılında yayınlanan asal halkalarda türetme üzerine makaleyle başlangıçta bulunulmuş ve günümüze kadar pek çok makale yayınlanmıştır. (Herstein I.N.; Bresar M.; Bell H.E.; Lanski C.; Lee T.K.; Nowicki A.;..)
Bu teorinin gelişimi sırasında türetme üzerine birçok soru düşünüldü;
Ÿ Türetmelerin çarpımı ve halkaların değişmeliliği üzerine Posner E. (1957); Ahmad M. (1977); Awtar R. (1973); Creedon T. (1998); Hangan M. (1991); Jensen D.W. (1995); Lanski C. (1987); Wang X.K (1994)… makaleleri yayınlanmıştır.
Ÿ Cebirsel türetmeler üzerine Amitsur S.A. (1957), Ayad M. Ve Ryckelynck P. (2002); Bell H.E. (2001); Bergen J. (1981); Bresar M. (1995); Lanski C. (1985)… makaleleri yayınlanmıştır.
Ÿ İntegral türetmeleri üzerine Amitsur S.A. (1957); Farkas D.R. (2000); Ferrero M. (1991); Nowicki A. (1987); Seidenberg A. (1966)… makaleleri yayınlanmıştır.
Ÿ Türetmelerin türleri üzerine Argaç N. (2001); Ashraf M. (2005); Beider K.I. (1999); Carini L. (1985); Chung L.O. (1985); Ferrero M. (2002); Jing W. (2003); Nakajima A. (2001)… makaleleri yayınlanmıştır.
Halkalarda türetme tanımı yapıldıktan sonra Jordan türetmesi, Lie türetmesi, ()- türetmesi, Jordan (
)- türetmesi tanımları verilmiştir.
1991 yılında Bresar, genelleştirilmiş türetmeyi tanımlamış ve iki türetmenin bileşkesi ile ilgili bazı özellikleri genelleştirilmiş türetmelere taşımıştır. Bu çalışmayı Hvala (1998), Lee (1999) ve Lee ve Shiue (2001) gibi matematikçilerin çalışmaları takip etmiştir.
Edward Posner 1957 yılında bir asal halka ve d, R halkasının sıfırdan farklı bir türetmesi olmak üzere x elemanıdır R için [d(x),x] elemanıdır Z ise R halkasının değişmeli olduğunu ispatlamıştır. Daha sonra Lee R.H. ve arkadaşları 1981 yılında yayınladıkları makalesiyle aynı teoremi farklı ispatını vermiştir.
Herstein I.N. 1970 yılında R karakteristiği 2 den farklı bir asal halka ve [d(R),d(R)] alt kümesidir Z koşulunu sağlıyorsa R halkasının değişmeli olduğunu ispatlamıştır. Ayrıca Herstein I.N. makalesinde d(R) alt kümesidir Z koşulunu sağlıyorsa R halkasının değişmeli olduğunu ispat etmiştir (Herstein I.N. 1970).
Tezi Word olarak aşağıdaki linkten indirebilirsiniz.
http://hotfile.com/dl/132136460/2d671a7/halkalarda_trev.doc.html
Yorumlarınız için teşekkür ederim...